

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Semester		L	Т	Р	С
		3	0	0	3
DIGITAL MARKETING (MCA4101)					

Course Objectives:

Digital marketing aims at being SMART (Specific, Measurable, Achievable, Relevant and Time Related) so that people can withstand against competitors.

Course Outcomes (COs): At the end of the course, student will be able to

- Explain about web pages with basic HTML5, DHTML tags using CSS and XML, the overview of W3C DOM.
- Discuss the key elements of a digital Java Scripts.
- Apply search engine optimization techniques to a website.
- Illustrate how the effectiveness of a digital marketing campaign can be measured
- Demonstrate advanced practical skills in common digital marketing tools such as SEO, SEM, Social media and Blogs

UNIT I:

HTML: Introduction, HTML5, Audio Elements, Video Elements, Organizing Elements. **Scripting Documents:** Dynamic Document content, Document properties, Legacy DOM, Document Collections, Overview of the W3C DOM, Traversing a Document, Finding Elements in a Document, Modifying a Document, Adding Content to a Document Example

UNIT II:

Cascading Style Sheets and Dynamic HTML: Overview of CSS, CSS for DHTML Scripting inline Styles, Scripting computed styles, Scripting CSS Classes, Scripting Style Sheets, **Java Script and XML:** Obtaining XML Documents, Manipulating XML with the DOM API, Transforming XML with XSLT querying XML with X path, Serializing XML, Example, XML and Web services.

UNIT III:

Search Engine Optimization (SEO): Searching Engine Marketing, Search Engine Optimization, Measuring SEO Success, Mapping with SEO Journey, **Search Advertising:** Online Advertising Payment Models, Search Advertising (Desktop & Mobile Devices), Planning & Executing a search Advertising Camping, Strategic Implications of Advertising on the search Network.

UNIT IV:

Search Media Marketing: What is Social Media? Social Media Marketing, Social Media Marketing Strategy, Adopting Social Media in Organizations: Internal Learning, Paid-Owned-Earned Media, Social CRM, **Mobile Marketing:**

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

Mobile Internet in India, What is Mobile Marketing? Email Marketing Strategy, Forms of Mobile Marketing, Mobile Advertising, M-Commerce.

UNIT V:

E-Mail Marketing: E-Mail Marketing in India, What is E-Mail Marketing? E-Mail Marketing Strategy, Executing E-Mail Marketing, **Internet Marketing:**

Internet Marketing Strategy, Content Marketing, Content Marketing in India.

Text Books:

- 1. The Art of Digital Marketing: The Definitive Guide to Creating Strategic, Targeted, and Measurable Online Campaigns, Ian Dodson, Wiley, 2016
- 2. Programming the World Wide Web, Robet W Sebesta, Pearson, 8th edition, 2015

- 1. Fundamentals of Digital Marketing, Second Edition, Pearson Paperback, 2019
- 2. Internet Marketing- A Practical approach in the India Context by Moutusy Maity, Oxford
- 3. Java Script: The Definite Guide David Flanagan, O' Reilly Publisher

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Semester		L	Т	T P			
		3	0	0	3		
HUMAN RESOURCE MANAGEMENT (MCA4101)							

Course Objectives:

- Contribute to the development, implementation, and evaluation of employee recruitment, selection, and retention plans and processes.
- Administer and contribute to the design and evaluation of the performance management program.
- Develop, implement, and evaluate employee orientation, training, and development programs.
- Facilitate and support effective employee and labour relations in both non-union and union environments.

Course Outcomes (COs): At the end of the course, student will be able to

- Explain the importance of human resources and their effective management in organizations
- Demonstrate a basic understanding of different tools used in forecasting and planning, human resource need.
- · Describe the meanings of terminology and tools used in managing employees effectively
- Make use of Record governmental regulations affecting employees and employers
- Analyze the key issues related to administering the human elements such as motivation, compensation, appraisal, career planning, diversity, ethics, and training

UNIT I:

HRM: Significance - Definition and Functions – evolution of HRM- Principles - Ethical Aspects of HRM- - HR policies, Strategies to increase firm performance - Role and position of HR department – aligning HR strategy with organizational strategy - HRM at global perspective -challenges – cross-cultural problems – emerging trends in HRM.

UNIT II:

Investment perspectives of HRM: HR Planning – Demand and Supply forecasting - Recruitment and Selection- Sources of recruitment - Tests and Interview Techniques - Training and Development – Methods and techniques – Training evaluation - retention - Job Analysis – job description and specifications - Management development - HRD concepts.

UNIT III:

Wage and Salary Administration: Concept- Wage Structure- Wage and Salary Policies- Legal Frame Work- Determinants of Payment of Wages- Wage Differentials - Job design and Evaluation- Incentive Payment Systems. Welfare management: Nature and concepts – statutory and non-statutory welfare measures – incentive mechanisms.

MASTER OF COMPUTER APPLICATIONS (MCA) (For Two-Year PG Programme)

UNIT IV:

Performance Evaluation: Importance – Methods – Traditional and Modern methods – Latest trends in performance appraisal - Career Development and Counseling- Compensation, Concepts and Principles-Influencing Factors- Current Trends in Compensation- Methods of Payments - compensation mechanisms at international level.

UNIT V:

Managing Industrial Relations: Trade Unions - Employee Participation Schemes-Collective Bargaining–Grievances and disputes resolution mechanisms – Safety at work – nature and importance – work hazards – safety mechanisms - Managing work place stress.

Text Books:

- 1) K Aswathappa: "Human Resource and Personnel Management", Tata McGraw Hill, New Delhi, 2013
- 2) N.Sambasiva Rao and Dr. Nirmal Kumar: "Human Resource Management and Industrial Relations", Himalaya Publishing House, Mumbai
- 3) Mathis, Jackson, Tripathy: "Human Resource Management: Asouth-Asin Perspective", Cengage Learning, New Delhi, 2013
- 4) Subba Rao P: "Personnel and Human Resource Management-Text and Cases", Himalaya Publications, Mumbai, 2013.
- 5) Madhurima Lall, Sakina Qasim Zasidi: "Human Resource Management", Excel Books, New Delhi, 2010

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Semester		L	L T P C				
		3	0	0	3		
	DEEP LEARNING (MCA4101)						

Course Objectives:

- Demonstrate the major technology trends driving Deep Learning
- Build, train and apply fully connected deep neural networks
- Implement efficient (vectorized) neural networks
- Analyze the key parameters and hyper parameters in a neural network's architecture

Course Outcomes:

- Demonstrate the mathematical foundation of neural network
- Describe the machine learning basics
- Compare the different architectures of deep neural network
- Build a convolutional neural network
- Build and train RNN and LSTMs

UNIT I:

Linear Algebra: Scalars, Vectors, Matrices and Tensors, Matrix operations, types of matrices, Norms, Eigen decomposition, Singular Value Decomposition, Principal Components Analysis. Probability and Information Theory: Random Variables, Probability Distributions, Marginal Probability, Conditional Probability, Expectation, Variance and Covariance, Bayes' Rule, Information Theory. Numerical Computation: Overflow and Underflow, Gradient-Based Optimization, Constrained Optimization, Linear Least Squares.

UNIT II:

Machine Learning: Basics and Underfitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood, Bayesian Statistics, Supervised and Unsupervised Learning, Stochastic Gradient Descent, Challenges Motivating Deep Learning. Deep Feedforward Networks: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and other Differentiation Algorithms.

UNIT III:

Regularization for Deep Learning: Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop and Manifold Tangent Classifier. Optimization

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

for Training Deep Models: Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms.

UNIT IV:

Convolutional Networks: The Convolution Operation, Pooling, Convolution, Basic Convolution Functions, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, Basis for Convolutional Networks.

UNIT V:

Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, LSTM, Gated RNNs, Optimization for Long-Term Dependencies, Auto encoders, Deep Generative Models.

Text Books:

- 1) Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
- 2) Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017.

Reference Books:

- 1) Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.
- 2) Deep learning Cook Book, Practical recipes to get started Quickly, Douwe Osinga, O'Reilly, Shroff Publishers, 2019.

e-Resources:

- 1) https://keras.io/datasets/
- 2) <u>http://deeplearning.net/tutorial/deeplearning.pdf</u>
- 3) <u>https://arxiv.org/pdf/1404.7828v4.pdf</u>
- 4) <u>https://github.com/lisa-lab/DeepLearningTutorials</u>

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Semester		L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Р	С	
		3	0	0	3	
AD-HOC AND SENSOR NETWORKS (MCA4101)						

Course Objectives:

- From the course the student will learn
- Architect sensor networks for various application setups
- Devise appropriate data dissemination protocols and model links cost
- Understanding of the fundamental concepts of wireless sensor networks and has a basic knowledge of the various protocols at various layers
- Evaluate the performance of sensor networks and identify bottlenecks

Course Outcomes:

- Evaluate the principles and characteristics of mobile ad hoc networks (MANETs) and what distinguishes them from infrastructure-based networks
- Determine the principles and characteristics of wireless sensor networks
- Discuss the challenges in designing MAC, routing and transport protocols for wireless ad-hoc sensor networks
- Illustrate the various sensor network Platforms, tools and applications
- Demonstrate the issues and challenges in security provisioning and also familiar with the mechanisms for implementing security and trust mechanisms in MANETs and WSNs

UNIT I:

Introduction : Fundamentals of Wireless Communication Technology, The Electromagnetic Spectrum, Radio propagation Mechanisms ,Characteristics of the Wireless channel mobile ad hoc networks (MANETs), **Wireless Sensor Networks (WSNs):** concepts and architectures, Applications of Ad Hoc and Sensor Networks, Design Challenges in Ad hoc and Sensor Networks.

UNIT II:

MAC Protocols For Ad Hoc Wireless Networks: Issues in designing a MAC Protocol, Issues in Designing a MAC Protocol for Ad Hoc Wireless Networks, Design Goals of a MAC Protocol for Ad Hoc Wireless Networks, Classification of MAC Protocols, Contention based protocols, Contention based protocols with Reservation Mechanisms, Contention based protocols with Scheduling Mechanisms, Multi channel MAC - IEEE 802.11.

MASTER OF COMPUTER APPLICATIONS (MCA) (For Two-Year PG Programme)

UNIT III:

Routing Protocols And Transport Layer In Ad Hoc Wireless Networks : Routing Protocol: Issues in designing a routing protocol for Ad hoc networks, Classification, proactive routing, reactive routing (ondemand), hybrid routing, Transport Layer protocol for Ad hoc networks, Design Goals of a Transport Layer Protocol for Ad Hoc Wireless Networks, Classification of Transport Layer solutions-TCP over Ad hoc wireless, Network Security, Security in Ad Hoc Wireless Networks, Network Security Requirements.

UNIT IV:

Wireless Sensor Networks (WSNS) and Mac Protocols: Single node architecture - hardware and software components of a sensor node, **WSN Network architecture:** typical network architectures, data relaying and aggregation strategies, **MAC layer protocols**: self-organizing, Hybrid TDMA/FDMA and CSMA based MAC -IEEE 802.15.4.

UNIT V:

WSN Routing, Localization & Qos: Issues in WSN routing, OLSR, Localization, Indoor and Sensor Network Localization, absolute and relative localization, triangulation, QOS in WSN, Energy Efficient Design, Synchronization.

Text Books:

- 1) "Ad Hoc Wireless Networks: Architectures and Protocols ", C. Siva Ram Murthy, and B. S. Manoj, Pearson Education, 2008
- 2) "Wireless Adhoc and Sensor Networks", Labiod. H, Wiley, 1st edition-2008
- 3) "Wireless ad -hoc and sensor Networks: theory and applications", Li, X, Cambridge University Press, fifth edition-2008.

- 1) "Ad Hoc & Sensor Networks: Theory and Applications", 2nd edition, Carlos De MoraisCordeiro, Dharma Prakash Agrawal ,World Scientific Publishing Company, 2011
- "Wireless Sensor Networks", Feng Zhao and LeonidesGuibas, Elsevier Publication 2nd edition-2004
- 3) "Protocols and Architectures for Wireless Sensor Networks", Holger Karl and Andreas Willig, Wiley, 2005 (soft copy available)
- 4) "Wireless Sensor Networks Technology, Protocols, and Applications", KazemSohraby, Daniel Minoli, &TaiebZnati, John Wiley, 2007. (soft copy available)

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Semester		L	Т	Р	С		
		3	0	0	3		
NETWORK PROGRAMMING (MCA4102)							

Course Objectives:

- Student able to learn about the protocols which are using in the current scenario.
- To learn and understand client server relations and OSI programming Implementation of the socket and IPC.

Course Outcomes:

- Explain OSI Model and Standard Internet Protocols
- How to handle server process termination
- Acquire the knowledge of Elementary TCP sockets and I/O Multiplexing and socket
- Demonstrate the concepts of FIFOs streams messages and Remote logins.

UNITI:

Introduction to Network Programming: OSI model, Unix standards, TCP and UDP & TCP connection establishment and Format, Buffer sizes and limitation, standard internet services, Protocol usage by common internet application.

UNIT II:

TCP client server: Introduction, TCP Echo server functions, Normal startup, terminate and signal handling server process termination, Crashing and Rebooting of server host shutdown of server host.

UNIT III:

Sockets: Address structures, value – result arguments, Byte ordering and manipulation function and related functions Elementary TCP sockets – Socket, connect, bind, listen, accept, fork and exec function, concurrent servers. Close function and related function.

I/O Multiplexing and socket options: I/O Models, select function, Batch input, shutdown function, poll function, TCP Echo server, getsockopt and setsockopt functions. Socket states, Generic socket option IPV6 socket option ICMPV6 socket option IPV6 socket option and TCP socket options.

UNIT IV:

Elementary UDP sockets: Introduction UDP Echo server function, lost datagram, summary of UDP example, Lack of flow control with UDP, determining outgoing interface with UDP.

Elementary name and Address conversions: DNS, gethost by Name function, Resolver option, Function and IPV6 support, uname function, other networking information.

MASTER OF COMPUTER APPLICATIONS (MCA) (For Two-Year PG Programme)

UNIT V:

IPC : Introduction, File and record locking, Pipes, FIFOs streams and messages, Name spaces, system IPC, Message queues, Semaphores. **Remote Login:** Terminal line disciplines, Pseudo-Terminals, Terminal modes, Control Terminals, rlogin Overview, RPC Transparency Issues.

Textbooks:

- 1) UNIX Network Programming, Vol. I, SocketsAPI, 2nd Edition. W.Richard Stevens, Pearson Edn. Asia.
- 2) UNIX Network Programming, 1st Edition, W.Richard Stevens. PHI.

- 1) UNIX Systems Programming using C++ T CHAN, PHI.
- 2) UNIX for Programmers and Users, 3rd Edition Graham GLASS, King abls, Pearson Education
- 3) Advanced UNIX Programming 2nd Edition M. J. ROCHKIND, Pearson Education

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Semester		L	С	
		3	0	0
	102)			

Course Objectives:

- Impart strong technical understanding of Blockchain technologies
- Develop familiarity of current technologies, tools, and implementation strategies
- Introduce application areas, current practices, and research activity

Course Outcomes (Cos): At the end of the course, student will be able to

- Demonstrate the foundation of the Blockchain technology and understand the processes in payment and funding.
- Identify the risks involved in building Blockchain applications.
- Review of legal implications using smart contracts.
- Choose the present landscape of Blockchain implementations and Understand Cryptocurrency markets.
- Examine how to profit from trading cryptocurrencies.

UNIT I:

The consensus problem, Asynchronous Byzantine Agreement, AAP protocol and its analysis, Nakamoto Consensus on permission-less, nameless, peer-to-peer network, Abstract Models for BLOCKCHAIN, GARAY model, RLA Model, Proof of Work (PoW) as random oracle, formal treatment of consistency, liveness and fairness - Proof of Stake (PoS) based Chains, Hybrid models (PoW + PoS).

UNIT II:

cryptographic basics for cryptocurrency, A short overview of Hashing, signature schemes, encryption schemes and elliptic curve cryptography

UNIT III:

Bitcoin, Wallet, Blocks, Merkley Tree, hardness of mining, transaction verifiability, anonymity, forks, double spending, mathematical analysis of properties of Bitcoin.

UNIT IV:

Ethereum: Ethereum Virtual Machine (EVM), Wallets for Ethereum, Solidity, Smart Contracts, some attacks on smart contracts

UNIT V:

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

(Trends and Topics): Zero Knowledge proofs and protocols in Blockchain, Succinct non interactive argument for Knowledge (SNARK), pairing on Elliptic curves ,Zcash.

Text Books:

 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016. (Free download available)

- 1) Joseph Bonneau et al, SoK: Research perspectives and challenges for Bitcoin and cryptocurrency, IEEE Symposium on security and Privacy, 2015 (article available for free download) {curtain raiser kind of generic article, written by seasoned experts and pioneers}.
- J.A.Garay et al, The bitcoin backbone protocol analysis and applications EUROCRYPT 2015 LNCS VOI 9057, (VOLII), pp 281-310. (Also available at eprint.iacr.org/2016/1048). (serious beginning of discussions related to formal models for bitcoin protocols).
- 3) R.Pass et al, Analysis of Blockchain protocol in Asynchronous networks , EUROCRYPT 2017, (eprint.iacr.org/2016/454) . A significant progress and consolidation of several principles).

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Somostor		L T P 3 0 0		С		
Iv Semester		3	0	0	3	
SOFTWARE TESTING METHODOLOGIES (MCA4102)						

Course Objectives:

- To study fundamental concepts in software testing and discuss various software testing issues and solutions in software unit, integration, regression and system testing
- To learn how to plan a test project, design test cases and data, conduct testing, manage software problems and defects, generate a test report
- To expose the advanced software testing concepts such as object-oriented software testing methods, web-based and component-based software testing
- To understand software test automation problems and solutions
- To learn how to write software test documents and communicate with engineers in various forms

Course Outcomes:

By the end of the course, the student should have the ability to:

- Identify and understand various software testing problems, apply software testing knowledge and engineering methods and solve these problems by designing and selecting software test models, criteria, strategies, and methods
- Design and conduct a software test process for a software project
- Analyze the needs of software test automation
- Use various communication methods and skills to communicate with their teammates to conduct their practice-oriented software testing projects
- Basic understanding and knowledge of contemporary issues in software testing, such as component-based, web based and object oriented software testing problems
- Write test cases for given software to test it before delivery to the customer and write test scripts for both desktop and web based applications

UNIT I:

Software Testing: Introduction, Evolution, Myths & Facts, Goals, Psychology, definition, Model for testing, Effective Vs Exhaustive Software Testing.

Software Testing Terminology and Methodology: Software Testing Terminology, Software Testing Life Cycle, Software Testing Methodology.

Verification and Validation: Verification & Validation Activities, Verification, Verification of Requirements, High level and low level designs, verifying code, Validation

MASTER OF COMPUTER APPLICATIONS (MCA) (For Two-Year PG Programme)

UNIT II:

Dynamic Testing-Black Box testing techniques: Boundary Value Analysis, Equivalence class Testing, State Table based testing, Decision table based testing, Cause-Effect Graphing based testing, Error guessing

White-Box Testing: need, Logic Coverage criteria, Basis Path testing, Graph matrices, Loop testing, data flow testing, mutation testing

UNIT III:

Static Testing: Inspections, Structured Walkthroughs, Technical Reviews

Validation activities: Unit testing, Integration Testing, Function testing, system testing, acceptance testing

Regression testing: Progressives Vs regressive testing, Regression test ability, Objectives of regression testing, Regression testing types, Regression testing techniques

UNIT IV:

Efficient Test Suite Management: growing nature of test suite, Minimizing the test suite and its benefits, test suite prioritization, Types of test case prioritization, prioritization techniques, measuring the effectiveness of a prioritized test suite. Software Quality Management: Software Quality metrics, SQA models Debugging: process, techniques, correcting bugs.

UNIT V:

Automation and Testing Tools: need for automation, categorization of testing tools, selection of testing tools, Cost incurred, Guidelines for automated testing, overview of some commercial testing tools such as Win Runner, Load Runner, Jmeter and JUnit . Test Automation using Selenium tool.

TestingObjectOrientedSoftware:basics,ObjectorientedtestingTestingWebbasedSystems:Challenges in testing for webbased software,qualityaspects,webengineering, testingof webbased systems,Testingmobilesystems

Text Books:

- 1) Software Testing, Principles and Practices, Naresh Chauhan, Oxford.
- 2) Software Testing- Yogesh Singh, CAMBRIDGE.

Reference books:

- 1) Foundations of Software testing, Aditya P Mathur, 2ed, Pearson.
- 2) Software testing techniques Baris Beizer, Dreamtech, second edition.
- 3) Software Testing, Principles, techniques and Tools, M G Limaye, TMH
- 4) Effective Methods for Software testing, Willian E Perry, 3ed, Wiley

e-Resources:

https://www.tutorialspoint.com/software_testing_dictionary/test_tools.htm

MASTER OF COMPUTER APPLICATIONS (MCA)

(For Two-Year PG Programme)

IV Semester		L	Т	Р	С
		3	0	0	3
	BIG DATA ANALYTICS (MCA4102)				

Course Objectives:

- To know the fundamental concepts of big data and analytics.
- To explore tools and practices for working with bigdata
- To learn about stream computing.
- To know about the research that requires the integration of large amounts of data.

Course Outcomes (COs): At the end of the course, student will be able to

- Identify the need-based tools, viz., Pig and Hive and to handle and formulate an effective strategy to implement a successful Data analytics project
- Organize the existing technologies and the need of distributed files systems to analyze the big data
- To Discuss the cluster and classification techniques
- Analyze the concepts of strem memory and spark models.
- Explain the use of NoSQL database in data analytics.

UNIT I:

Introduction to Big Data- Evolution of Big data, Best Practices for Big data Analytics, Big data characteristics, Validating, The Promotion of the Value of Big Data, Big Data Use Cases, Characteristics of Big Data Applications, Perception and Quantification of Value, Understanding Big Data Storage, A General Overview of High, Performance Architecture, HDFS, MapReduce and YARN, Map Reduce Programming Model

UNIT II:

Frameworks-Applications on Big Data Using Pig and Hive, Data processing operators in Pig, Hive services, HiveQL, Querying Data in Hive, fundamentals of HBase and Zoo Keeper, IBM InfoSphere Big Insights and Streams

UNIT III:

Clustering and Classification-Advanced Analytical Theory and Methods: Overview of Clustering, K-means, Use Cases - Overview of the Method, Determining the Number of Clusters, Diagnostics, Reasons to Choose and Cautions. Classification: Decision Trees, Overview of a Decision Tree, The General Algorithm, Decision Tree Algorithms, Evaluating a Decision Tree, Decision Trees in R, Naïve Bayes, Baye'sTheorem, Naïve Bayes Classifier.

MASTER OF COMPUTER APPLICATIONS (MCA) (For Two-Year PG Programme)

UNIT IV:

Stream Memory and Spark- Introduction to Streams Concepts, Stream Data Model and Architecture, Stream Computing, Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Introduction to Spark Concept, Spark Architecture and components, spark installation, spark RDD(Resilient Distributed Dataset), spark RDD operations.

UNIT V:

NOSQL Data Management for Big Data and Visualization- NoSQL Databases: Schema-less Models: Increasing Flexibility for Data Manipulation, Key Value Stores, Document Store, Tabular Stores, Object Data Stores, Graph Databases Hive, Sharding, Hbase, Analyzing big data with twitter, Big data for E-Commerce Big data for blogs, Review of Basic Data Analytic Methods using R.

Text Books:

- 1. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
- 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann/El sevier Publishers, 2013.

- 1. MichaelBerthold, DavidJ. Hand, "IntelligentDataAnalysis", Springer, 2007.
- 2. TomWhite"Hadoop:TheDefinitiveGuide"ThirdEdition,O'reillyMedia,2012.
- 3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill Publishing, 2012.
- 4. BillFranks, "TamingtheBigDataTidalWave:FindingOpportunitiesinHugeData Streams with Advanced Analytics", John Wiley& sons, 2012.
- 5. GlennJ.Myatt,"MakingSenseofData",JohnWiley&Sons,2007.
- 6. Pete Warden, "Big Data Glossary", O'Reilly,2011.
- 7. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", 2nd Edition, Elsevier, Reprinted2008.